se在线视频_污视频网站入口_久久九九久久_91精品一线二线三线精华液_国产精品欧美日韩_国产网站在线

四面体和三角锥的区别

发布时间:2022-08-24分类:初三辅导
初高中视频课程免费试听20小时
1初一全科精品视频课程免费试听 2初二全科精品视频课程免费试听 3初三全科精品视频课程免费试听
4高一全科精品视频课程免费试听 5高二全科精品视频课程免费试听 6高三全科精品视频课程免费试听

数学中只有三棱锥和四面体,这两者本质上是没有区别的,三角锥只是一种特殊说法。三棱锥是锥体的一种,由四个三角形组成,称为四面体。底面是正三角形,顶点在底面的射影是底面三角形的中心的三棱锥,称作正三棱锥。

三棱锥相关内容介绍

外心

若O是△ABC的外心,则OA=OB=OC。由于OP⊥平面ABC(射影的定义),因此OP⊥OA、OP⊥OB、OP⊥OC。勾股定理得PA=PB=PC。又tanPAO=OP/OA,tanPBO=OP/OB,tanPCO=OP/OC,由此可知∠PAO=∠PBO=∠PCO。

综上,可得到以下定理:

1.当三棱锥的三条侧棱相等时,顶点在底面的射影是底面三角形的外心。

2.当三棱锥的三条侧棱与底面所成角相等时,顶点在底面的射影是底面三角形的外心。

内心

若O是△ABC的内心,则O到三边距离相等,且O在△ABC内。设O到BC、AC、AB的垂线段分别为OD、OE、OF,那么OD=OE=OF。由勾股定理得PD=PE=PF。又tanPDO=OP/OD,tanPEO=OP/OE,tanPFO=OP/OF,因此∠PDO=∠PEO=∠PFO。且由三垂线定理可知PD⊥BC、PE⊥AC、PF⊥AB,即∠PDO、∠PEO、∠PFO分别是二面角P-BC-A、P-AC-B、P-AB-C的平面角。

综上,可得到以下定理:

1.当三棱锥的顶点到底面三角形三边距离相等,且顶点在底面的射影在底面三角形的内部,那么射影是内心。

2.当三棱锥的各个侧面与底面构成的二面角相等,且顶点在底面的射影在底面三角形的内部,那么射影是内心。

主站蜘蛛池模板: 日本高清免费毛片久久看 | 午夜小片 | 亚洲国产成人久久综合野外 | 蜜桃bt天堂精品视频在线观看 | 天天做天天爱天天综合网 | 丁香六月婷婷综合激情动漫 | 亚洲另类欧美综合久久图片区 | 免费看黄色毛片 | 娜娜麻豆国产电影 | 日韩爱爱视频 | 日本免费一二区 | 在线资源天堂 | 久久综合九色综合欧美狠狠 | 国产69精品久久久久99 | 精品无码久久久久成人漫画 | 久久久99视频 | 国产成人小视频在线观看 | 亚洲 欧美 影音先锋 | 精品新一区二区三区四区 | 成人a毛片在线看免费全部播放 | 亚洲中文字幕无码专区 | 99热国产这里只有精品免费 | 日韩久久久精品中文字幕 | 欧美一级特黄aa大片婷婷 | 东京热一精品无码av | 伊人色综合网一区二区三区 | 在线视频 自拍 | 午夜网站免费版在线观看 | 免费观看全黄做爰大片 | 欧美成a | 网友自拍区视频精品 | 亚洲精品久久久久久久福利 | 亚洲精品欧美综合 | 日韩精品无码中文字幕一区二区 | 亚洲国产成人精品久久 | 欧美亚洲国产第一页草草 | 精品一区二区三区免费站 | 亚洲av理论在线电影网 | 激情偷乱人伦小说视频在线 | 国产精品高清一区二区三区不卡 | 国内揄拍国产精品人妻门事件 |